Function Approximation Using Artificial Neural Networks
نویسنده
چکیده
Function approximation, which finds the underlying relationship from a given finite input-output data is the fundamental problem in a vast majority of real world applications, such as prediction, pattern recognition, data mining and classification. Various methods have been developed to address this problem, where one of them is by using artificial neural networks. In this paper, the radial basis function network and the wavelet neural network are applied in estimating periodic, exponential and piecewise continuous functions. Different types of basis functions are used as the activation function in the hidden nodes of the radial basis function network and the wavelet neural network. The performance is compared by using the normalized square root mean square error function as the indicator of the accuracy of these neural network models. Key-Words: function approximation, artificial neural network, radial basis function network, wavelet neural network
منابع مشابه
Comparison of the performances of neural networks specification, the Translog and the Fourier flexible forms when different production technologies are used
This paper investigates the performances of artificial neural networks approximation, the Translog and the Fourier flexible functional forms for the cost function, when different production technologies are used. Using simulated data bases, the author provides a comparison in terms of capability to reproduce input demands and in terms of the corresponding input elasticities of substitution esti...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملEstimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملPredicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks
A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radi...
متن کامل